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A Rigorous Analytical Solution to Abrupt
Dielectric Waveguide Discontinuities

Nagayoshi Morita, Senior Member, IEEE

Abstract —A simple analytical method is proposed for analyz-

ing transmitted, reflected, and radiated fields in abrnpt discon-

tinuities of dielectric waveguides, such as step discontinuities

and sharp bends. In this method, approximate transmitted
fields, both guided mode fields and radiated fields, are first

calculated by assuming the incident field to be the source field
on the discontinuity interface. Next, the approximate reflected

fields are calculated by assuming the difference field of the
incident and approximate transmitted fields to be the source
field on the discontinuity interface. Then, the improvements for

these approximate transmitted fields and approximate reflected
fields are calculated in turns, successively. Only a few successive
steps snfflce for obtaining rigorous solutions. Numerical exam-
ples are presented for step discontinuities and sharp bends of
dielectric slab waveguides.

I. INTRODUCTION

A great many papers have been published on abrupt

discontinuities of dielectric waveguides. A fair num-

ber of these papers are listed in [1] and [4]. Almost all of

these papers aim at full-wave analysis and therefore re-

sort necessarily to certain numerical techniques, except

for a few of the earlier papers.

Going against the trend of developing better numerical

techniques, this paper shows that a new, simple analytical

method can be successfully constructed for obtaining rig-

orous solutions to the problem of abrupt discontinuities

of dielectric waveguides. Although the method employs a

successive process, it is ensured theoretically that the

solution series converges very rapidly, which is essentially

different from the successive solutions to the integral

ecmations for the boundarv conditions that were used in

[i[3].

The theory is applied to the step discontinuities and

sharp bends. Rigorous values are presented of transmit-

ted guided mode power, transmitted radiated power, re-

flected guided mode power, reflected radiated power,

radiation pattern, etc. These results serve for the purpose

of checking the accuracy of various numerical methods

that are being planned or are under study.
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Fig. 1. Abrupt discontinuity of dielectric slab waveguide

II. THEORY

A. Successive Calculation of Transmitted and

Reflected Fields

Consider the abrupt discontinuity of Fig. 1, in which

slab waveguide I with core width d’ and core refractive

index n; and slab waveguide II with core width dll and

core refractive index n~ are connected at a surface S;

both waveguides I and II have the same cladding refrac-

tive index, n2. Let the electromagnetic fields E’, H’ be

incident on S from the side of waveguide I (or simply

“side I“) and let the transmitted fields and reflected

fields be ET, HT and ER, HR, respectively. The surfaces

S1 and SIr are defined to be the surfaces that are very

close to S in the sides I and H, respectively.

First we assume on S Ir those electromagnetic field

sources whose tangential components are identical to the

tangential components of the incident fields, E:, H:, where

the subscript t denotes the tangential component. Then

we name the fields on the side II produced by these

sources the first-order transmitted electromagnetic fields

and express these as ET(l), H~(l). If the tangential compo-

nents of E ‘(1) and HT(l) on S, Etr(l) and HtT(l), are just

equal to E: and H;, respectively, on S, the reflected

fields on side I must be null. However, this situation

never happens as long as there exists some discontinuity

at S between the left and right sides. Thus, we consider

that the differences between the first-order transmitted

fields and the incident fields on S act as sources for the

fields reflected back to side I. That is, we next assume the

following tangential electromagnetic field sources 8E(1)
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and t3.HtlJ on S1:

In this assumption, the equality between the tangential

components of fields on S II and those on S I is tacitly

used. We name the fields on side I produced by the

sources 8E$1) and 8H\1) the first-order reflected fields

and express them as E~(l), H~(l). Since the incident fields
E*, H’ on SI do not contribute to the reflected fields on

side I, it follows that only E;(l), Ht~(l) of the right-hand

side of (1) act as the sources of ER(l), H~(l).

As a matter of course, the tangential components of
E~(l) and HMIJ on S1 do not coincide with the corre-

sponding fields on S1, 8E$1) and 8H\l). Therefore, we
further assume as the sources on SI1 the following tan-

gential components of the difference field between E~(l)

and 1111(1)and the difference field between HR(l) and
8H(1):

We name the fields produced on side H by 8E$2), 8H}2) on

S1l the second-order transmitted fields and express them
as E~”(2), H ‘(2). It is clear that the fields on side II caused

by the source fields i$E$l) and 8H}1) become zero because

these fields are already taken into account when the

first-order transmitted fields are calculated. (Refer to (1).)

It follows, therefore, that only E~[l), H?(l) of the right-

hand side of (2) contribute ‘to producing the fields
ET(2) H~(2). In similar fashion, we define the nth-

orde~ reflected electromagnetic fields, ER(”), HR(”), and

the (n+ l)th-order transmitted electromagnetic fields,
~Un -~0, HT’@ + 1) (n= 2,3, . . . ). Then, it follows that onlY

the smrce fields E:(”), HtT(”) on S 1 produce ER(”), HR(”)

and that only the source fields E~(n), H:(”) on S1l pro-

duce ET(” + 1),H~(”+ l).

As is clear from the successive steps explained above,

the source of the rzth-order transmitted fields on side H

is the yet-mismatched quantity, on the surface S, between

the tangential components of the reflected fields down to

the ( n – l)th order and those of the transmitted fields

down to the (n – l)th order; the source of the rzth-order

reflected fields on side I is the yet-mismatched quantity,

on the surface S, between the tangential components of

the reflected fields down to the (n – l)th order and those

of the transmitted fields down to the nth order. There-

fore, the higher order transmitted and reflected fields

rapidly decreases as the mismatched field quantity de-

creases. In other words, the transmitted and reflected

elect romagnetic fields, E;, H: and E;, H;, given by

rapidly converge to the true transmitted fields E‘, H T

and the true reflected fields ER, HR, respectively, witlh
the increase of N. It is evident that lET(” + 1)1< \E~(n)\ ~:
lET(~)l and lER(’t+l)\ < lET(n+ 1)1< IER(”)I hold, or rather,

in most cases lE~(n+l)/ET(”)] <<1 and lE~(”+ l)/ER(”)l
<<1. Therefore, the rate of convergence of the series (,3)

and (4) is remarkably high and moreover they converge

absolutely.

B. Mode Expressions of Reflected and Transmitted Fields

We express electromagnetic fields in dielectric wave-

guide regions (E, H) in terms of mode fields for the

dielectric waveguide (~, ~) as follows:

E=~am~m +Jb(r)~(r)dr (5)
m

H= ~a,nIln+ jb(r)~(r)dr (6)
m

where the first terms on the right-hand sides of (5) and (6)

are the sums of the guided modes, and the second terms

are the spectral integrals of the radiation modes, and

these mode fields are written as

& = e~e ‘]~”z ~~ = h~e-l~.z (;7)

qr) = e(17)e-Jp’ ~(r) = h(17)e-’PZ (8),,

where ~,. is the propagation constant in the z directicm

of guided modes and the subscript m denotes a guided

mode number. (3 and 17are the wavenumbers with respect

to radiation modes; ~ is the wavenumber in the z direc-

tion and r is that in the x direction in the cladding

region, the relation between them being r = (n; k: –
f12)1/2, where k. denotes the free-space wavenumbm-.

The specific expressions for’ en, hm, e(r), and h(17 are
given, for example, in [5] for both TE and TM modes. The

range of integration of r in (5) and (6) is usually O to W.

Rigorously, however, when the real value range of ~ is

not O to kO but a certain value a to kO or – a to kO, the

range of 17 should be modified to exclude or include tlhe

spectral range corresponding to ~ = O to a or ~ = – a to

O. This case occurs, for instance, when the fields are those

which emanate from a tilted surface S. This modificaticm,

however, is not very important in most practical numeri-

cal calculations for the present problem of waveguide

discontinuities, since the power included in the modified

part of the spectrum is, in most cases, negligibly small.

Next, we explain how to get the transmitted fields

E1l H 11 when source fields E:, H} are given on surfd.ce
Sil’ Fig. 2 shows a cross section of the part of waveguide
H on the right side of the junction. The configuration is
assumed to be uniform in the y direction. Let CO be the
line which lies in the cross section of Fig. 2 and which is
on S II let Cf be the straight line parallel to the y axis a

certai~ distance from CO, and let CL+) and CL-) be fhe

straight lines parallel to the z axis and at x = + @ and
x = —w, respectively. It is convenient to assign the direc-

tions to these lines as shown in Fig. 2 using arrows. Also,

let the three regions bounded by the lines C&+), CO, Cj,-’,
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are chosen as ~ Ir, ~11 in (9), the normalized orthogonal-

ity properties for the radiation modes
._____— -.;

I II
~ (+) ~ ~J~ (e(rp)Xh*(rq))izdx

I
m

1

.
{

(@/ l~,l)~(r~ - r.), TE radiation modes—
I

—

sfJ ; z (Pp/ bpl)~(r, - r.), TMradiationmodes
(12)

7iin c
o t

Cf
s ‘-) can be used to derive from the integral on Cf the expan-

1
I ~.
I 1“

sion coefficient b(r), where 8( ) is the Dirac delta func-
-—-. -.— ----- J tion. In this case, we have from (9)

S&n 1% 1
Fig. 2. A cross section of the part of waveguide II. b(r) =–~/c(~ll(r)* x~}+~fx ~ll(r)*)indl

o

and Cf and the core–cladding boundary lines x = d’1/2

and x = – drl/2 be S(+), SO, and S(–) as in Fig. 2.

First, the transmitted fields E1l, H1l are expressed ilm

terms of the mode fields in waveguide II, i.e., & ‘I, ~]1

(@, ~~r or 1111(1’), ~r@)), in the form of (5) and (6).

Then, applyin~ the Lorentz reciprocity theorem for the
H H1l and En, gn in each region of S(‘)’,field pairs E ,

SO, and St- ) and adding ~he three results, we have zero

values for the integrals on the regions S(+), SO, and S(’)

because there are no sources within these regions. Also,

we have zero values for the integrals on the lines x =

~ drl/2 and the lines CL+) and CL–) because of the

boundary conditions on x = + dll/2 and the radiation

condition of E 11,H‘1 at x = + CO,respectively, the result

being

/( E1l X H1l*+ E1l*x H1l)indl— —
Cf

+ /( E1lx H:*+E~ x~ll)”indl=O (9)
co –

( 13)

for reaI @Ii, and for imaginary ~11

b(r) =–~JC(~lI(r)* x~)+E~x ~ll(r)*)+indl.
o

(14)

Here u – 1, depending on whether

E1l(r), ~sll(~) a~~ T~-mode fields or TM-mode fields,

~nd the fields marked with overbars (~11, ~11) denote the

radiation mode fields propagating in the negative z direc-

tion. We can obtain analogously the mode expansion

coefficients for the fields produced in side I when sources

are given on S 1 just to the left of surface S. The results

are similar to (11), (13), and (14) and are omitted here.

Now, it is very easy to get the expansion coefficients am

and b(r) for the fields of waveguide 11 expressed in the

form of (5) and (6) when the source fields on CO, i.e., E:

and HtO, are given in terms of the mode fields of wave-

guide I that propagate in the negative z direction. Let

E:, H: be given by

where in is the outwardly directed unit normal and *
/

@ = ~Cm~~m + g(r)~j(r) dr (15)
denotes the complex conjugate. If @II is imaginary, mode

fields &11, ~11 must be replaced by those which propagate

in the negative z direction. If guided mode fields E 11 H 11 /
H}= ~Cm~~n+ g(r)~)(r)dr. (16)_m,_m

are used for ~ 11,~rI in (9), the normalized orthogonality
properties for the guided modes Then, substituting (15) and (16) into (11), (13), and (14)

yields the following three expressions:

(lo)
: (~ (a;:!m+ tz’j,n)cmfan=—

can be used to derive from the integral on Cf of (9)

the expansion coefficients am, where 8Mfl denotes the /
~(r)l)g(r) dr+ (k~(r)l +7

Kronecker delta function. In this case, we have from (9)
1

(17)

On the other hand, if radiation mode fields ~11(1’), ~11(1’) /
}

+ (g’(r’, r)’ + gf’(r’, r)l)g(rf) drf (18)
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for real flII, and

“{
b(r) ❑=> ~ (b~(r)”” + tf;r(r)’’I’)cmr

m’

/
)

+ (gf(r’, r)l’ll + g“(r’,r)l’ll)g(rf) m’ (19)

(20)

(21)

(22)

(23)

(24)

(25)

g’(r, r’) = -~fc (g}(r) x~}l(r’)*). indl (26)
o

gyr,r’) = – ~Jc (@(r’)*x H)(I’))”i, dl. (27)
o

The superscripts I and II on a~,m, Hm,(r), etc., mean that

the signs of the propagation constants /31 and /311 are

changed in the expressions without those symbols, de-

pending on whether I or II is attached. In the special case

where E), H) on CO are the rn’th guided mode fields of

waveguide I with amplitude C~, propagating in the posi-

tive z direction,, the expansion coefficients (17)–(19) re-

duce to, the following simpler forms:

1
a m=—2 ( “m’m + alt’m) cm’” (28)

b(r) = ~(b~r(r)+ b;(r) )cml, for real ~’I (29)

= - ~(b~((r)- b;j(r))cm, for imaginary ~11.

(30)

Similarly, we can obtain the fields E1, H1 on side I

produced by those source fields on S’I just to the left of

surface S whose tangential components are expressed by

J
m

1275

I x t II
n2 I n2

Fig. 3. Step discontinuity.

That is, the mode expansion forms for EI, H1 are given by

/
E1= ~Cm~;+ g(r)ljl(r)dr (33)

m

HI= ~Cm@; + /g(r) @I(r) dr (34)
.

m

where the expansion coefficients cm and g(f’) become

J+ (b~(r)I* + b;(r) I*)b(r) dr
}

(35)

/ }
+ (g’(r, rf)l* + g’f(r, r’)l*)b(r’) dr’ (36)

for real /31 and

g(r) = “{-~ Z(%(r)*+ZL(r)*)amr
m’

/ }
+ (gf(r, r’)*+ g“(r,r’)*)b(r’) drf (37)

for imaginary ~ I.

III. NUMERICAL EXAMPLES

A. Step Discontinuities

The step discontinuity configuration treated here is

shown in Fig. 3. The core widths of waveguides I and II

are 2 d and d, respectively, and the refractive indices of

the core and cladding are nl and nq for both waveguicks.

The incident field is assumed to be the TEO mode with

unit power, incident on the junction at z = O from the

side of wavegmide 1. The first-order transmitted field, the

first-order reflected field, and the second-order transmit-

ted field were calculated using the equations presented in

the previous section for eight cases, four for the case of

small refractive index difference, i.e., n ~= 1.01 and nz. =

1.0, and four for the case of relatively large refractwe

index difference, i.e., nl = 1.432 and nz = 1.0. The power
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TABLE I

REFLECTEDAND TRANSMITTEDPOWER(nl = 1.01, rzz = 1.0)

kOd 5.0 10.0 20.0 40.0

Guided 0.94392 0.98995 0.95718 0.86334
pT(l) Radiation 0.56085 X 10-1 0.10065 X 10-1 0.42827X 10-1 0.13666

Total 1.00001 1.00001 1.00001 1.00001

Guided o.13486x 10-5 O.25987X 10-5 0.23507 x10-5 0.16739x 10-5
0.30990 x 10-5

~R(l) Radiation 0.98447 X 10-5 0.79565X 10-5 0.59923X 10-5 0.18661X 10-5
Total 0.11193x 10-4 0.1O555 X 10-4 0.83430x 10-5 0.66390x 10-5

pw) + pm 1.00002 1.00002 1.00002 1.00002

Guided 0.59260 X 10- ‘0 0.83594 X 10-10 0.28565X 10-10 0.58026X 10-11
~ T(2) Radiation 0.64853 X 10-9 0.80739 X 10-9 0.10126 X 10-8 0.12346x 10-8

Total 0.70779x 10-9 0.89099x 10-9 O.1O412X 10-8 0.12404x 10-8

Guided 0.94391 0.98993 0.95717 0.86334

P~(l ‘2) Radiation 0.56082X 10-1 0.10063X 10-1 0.42823X 10-1 0.13666

Total 0.99999 0.99999 0.99999 0.99999

pT(l +2)+ pW 1.00000 1.00000 1.00000 1.00000

TABLE H

REFLECTEDAND TRANSMITTEDPOWER(nl = 1.432, nz = 1.0)

kod 0.5 1.0 2.0 4.0

Guided 0.92325 0.97528 0.98732 0.90899
pT(l) Radiation 0.75691 X 10-1 0.26752X 10-1 0.26601x 10-2 0.96803X 10-1

Total 0.99894 1.00199 0.98998 1.00580

Guided 0.14826 X 10-Z 0.32399 X 10-2 0.21542X 10-2 0.31563X 10-2
0.68104 x10-2

pR(l) Radiation 0.17909x 10-2 0.13133 X 10-2 0.12396x 10-2 O.86474X 10-2
Total 0.32735 X 10-2 0.45532X 10-2 0.33938X 10-2 0.18614X 10-1

pW) + pW 1.00221 1.00654 0.99338 1.02441

Guided 0.21357 X 10-5 0.92822X 10-5 0.13693X 10-4 0.29406X 10-4
pW Radiation 0.34411 X 10-5 0.59777X 10-5 0.22633X 10-4 0.10180X 10-2

Total 0.55768 X 10-5 0.15260X 10-4 0.36326X 10-4 0.10475X 10-2

Guided 0.92149 0.96936 0.99343 0.90026
Pr(l ‘2) Radiation 0.75208X 10-1 0.26092X 10-1 0.31076x 10-2 0.81402X 10-1

Total 0.99670 0.99545 0.99654 0.98166

pW+3 + pWU 0.99997 1.00000 0.99994 1.00028

90°

I
-r--w

- b,

, \
r \1* \ \, \, \
L. I \
I ‘\ 4

IL2E4:0
t1

0.5 1.0

Fig. 4. Far radiated electric field pattern (nl = 1.01, rzz = 1.0, Fig. 5. Far radiated electric field pattern (n ~ = 1.432, n2 = 1.0,

kOd = 20.0). kod = 2.0).
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TABLE III

FIRST-ORDER REFLECTEDAND TRANSMITTEDPOWER(rzl = 1.502, rzz= 1.5, kOd = 6Tr)

o (Bent Angle) 1° Y Y’

Guided 0.86258 0.56434 0.29187
pT(U Rad. (even) 0.13036 X 10-1 0.11120 0.26131

Rad. (odd) 0.12439 0.32446 0.44682

Total 1.00000 1.00000 1.00000

Guided 0.15912x 10-14 0.19736 X 10-13 0.63180 X 10-13
pW) Rad. (even) 0.30512 x10-7 0.46961 X 10-6 0,19819 X 10-5

Rad. (odd) 0.16348 X 10-4 0.34647 X 10 ‘4 0.33690 X 10-4
Total 0.16379 X 10-4 O.35117X1O-4 0.35671 X 10-4

pm) + pm 1.00002 1.00004 1.00004

0 (Bent Angle) @ 5“ I&

Guided 0.12326 0.42511 x10-1 0.18270 X 10-3
pW Rad. (even) 0.38090 0.45073 0.49972

Rad. (odd) 0.49584 0.50676 0.50010
Total 1.00000 1.00000 1.00000

Guided 0.95456 X 10-13 0.67899 X 10-13 0.67785 X 10-12
pW) Rad. (even) 0.45116 x10-5 0.10308 x10-4 0.47658 X 10-3

Rad. (odd) 0.34514 x 10-4 0.88099 X 10-4 0.21157 X 10-3
Total 0.39025 X 10-4 0.98407 X 10-4 0.68816 x 10-3

p~(l) + pW 1.00004 1.00010 1.00069

value:s are listed in Table I for the four cases of /cOd = 5.0,

10.0, 20.0, and 40.0 with rzl = 1.01 and rzz = 1.0 and in

Table II for the four ‘cases of kod = 0.5, 1.0, 2.0, and 4.0

with ,tzl = 1.432 and nz = 1.0. The symbols P~(lJ and PR(I)

indicate the first-order transmitted and reflected power,

respectivel~ P~(21 indicates the ‘power of the second-order

transmitted field, while P~(l ‘2) indicates the power of the

sum of the transmitted field up to the second-order,

which is different from P~(l) + P~(2). Although results

with higher accuracy would be obtainable, up to the five

significant figures are shown in the tables, Two guided

modes can be guided only in the case of /cOd = 40.0 for

the examples of Table I and only in the case of kOd = 4,0

for the examples of Table H; all others are the single

guided mode waveguides.

It is observed that in the case where the difference

between core and cladding refractive indices is very small,

as in the examples in Table I, the reflected power is

extremely small and the second-order transmitted power

becomes even smaller. Therefore we can say that the

calculation of only the first-order transmitted field suf-

fices for a practical solution. Also, it is observed from

Table II that even for the case of a relatively large

difference between core and cladding refractive indices,

calculation of the transmitted fields up to the second

order is sufficient to attain very high accuracy e.g., even

in the worst case the relative error in the energy relation

is less than 0.03%.

Fa,r radiated fields can easily be obtained by applying

the method of steepest descents to the radiation mode

expansion part of mode expansion expressions for the

transmitted and reflected fields. Figs. 4 and 5 show a plot

of the absolute value of far radiated first-order electric

field lEY(@)l for the cases of rzl = 1.01, n2 = 1.0, kOd = 20.0
and rzl = 1.432, n2 = 1.0, kOd = 2.0, respectively. In Fig. 4,

x
t D

I
na

#
2d nl

I

o z

Fig. 6. Sharp bend.

only the transmitted side is shown because the reflected

side value is negligibly small. The small discrepancy ob-

served at the 9iT position in Fig. 5 is caused by a neglect

of the higher order fields. Incidentally, it is confirmed for

all eight cases that the first-order transmitted radiation

power calculated from the following expression:

using discretization every 1° and the same power calcu-

lated from another expression,

P = ~’k”lb(r) 12dr (39)

agree to within 1S70.

B. Sharp Bends

Another discontinuity configuration examined numm-i-

cally is the sharp bend shown in Fig. 6. The bent angle is

O and the core width is the same for waveguides I and H.
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Fig. 7. Far radiated electric field pattern, (nl = 1.502, nz = 1.5, /cod=
6w): (a)@= 4°; (b) 6 = 20°.

Again, the incident field is assumed to be the TEO mode

field with unit power. The first-order reflected and trans-

mitted power values are shown in Table 111 for the six

cases of bend angle 6 = 1°, 2“, 3°, 4, 5°, and 10° with

nl = 1.502, nz = 1.5, and /cOd = 6r. As seen from Table

HI, the first-order reflected guided mode power is less

than 10-10 for all cases, which means that the reflected

guided mode power is insignificant. It is seen that the

reflected radiation power is also very small. Therefore, we

can say that full-wave analysis including reflected fields is

unnecessary for sharp bends as long as the bend angle is

not too large.

Parts (a) and (b) of Fig. 7 show the far radiated electric

field IEY / for the cases of 6 = & and 20’, respectively.

Incidentally, the far-field pattern for 0 = 10° also was

found to become much the same as that for O = 2@.

IV. CONCLUSIONS

An analytical and successive method for solving electro-

magnetic fields in abrupt discontinuities of dielectric slab

waveguides has been presented and numerical results

shown for step discontinuities and sharp bends. The re-

sults can serve as data for checking the accuracy of

solutions obtained using other numerical techniques that

would be useful for solving more complicated discontinu-

ity configurations. Although the present method is partic-

ularly effective when applied to abrupt discontinuities in

open type waveguides, where the reflected power is very

small, the method is also applicable, theoretically, to

discontinuity configurations causing large reflected power.

Moreover, the method could easily be extended to prob-

lems of abrupt discontinuities of any type of waveguides,

including closed types.
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