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A Rigorous Analytical Solution to Abrupt
Dielectric Waveguide Discontinuities

Nagayoshi Morita, Senior Member, IEEE

Abstract —A simple analytical method is proposed for analyz-
ing transmitted, reflected, and radiated fields in abrupt discon-
tinuities of dielectric waveguides, such as step discontinuities
and sharp bends. In this method, approximate transmitted
fields, both guided mode fields and radiated fields, are first
calculated by assuming the incident field to be the source field
on the discontinuity interface. Next, the approximate reflected
fields are calculated by assuming the difference field of the
incident and approximate transmitted fields to be the source
field on the discontinuity interface. Then, the improvements for
these approximate transmitted fields and approximate reflected
fields are calculated in turns, successively. Only a few successive
steps suffice for obtaining rigorous solutions. Numerical exam-
ples are presented for step discontinuities and sharp bends of
dielectric slab waveguides.

I. INTRODUCTION

Agreat many papers have been published on abrupt
discontinuities of dielectric waveguides. A fair num-
ber of these papers are listed in [1] and [4]. Almost all of
these papers aim at full-wave analysis and therefore re-
sort necessarily to certain numerical techniques, except
for a few of the earlier papers.

Going against the trend of developing better numerical
techniques, this paper shows that a new, simple analytical
method can be successfully constructed for obtaining rig-
orous solutions to the problem of abrupt discontinuities
of dielectric waveguides. Although the method employs a
successive process, it is ensured theoretically that the
solution series converges very rapidly, which is essentially
different from the successive solutions to the integral
equations for the boundary conditions that were used in
[1]-[3].

The theory is applied to the step discontinuities and
sharp bends. Rigorous values are presented of transmit-
ted guided mode power, transmitted radiated power, re-
flected guided mode power, reflected radiated power,
radiation pattern, etc. These results serve for the purpose
of checking the accuracy of various numerical methods
that are being planned or are under study.
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Fig. 1. Abrupt discontinuity of dielectric slab waveguide

II. THEORY

A. Successive Calculation of Transmitted and
Reflected Fields

Consider the abrupt discontinuity of Fig. 1, in which
slab waveguide 1 with core width d! and core refractive
index n! and slab waveguide II with core width d' and
core refractive index n}' are connected at a surface S;
both waveguides I and II have the same cladding refrac-
tive index, n,. Let the electromagnetic fields E', H* be
incident on § from the side of waveguide I (or simply
“side I"") and let the transmitted fields and reflected
fields be E7, H” and ER, H¥, respectively. The surfaces
ST and S are defined to be the surfaces that are very
close to S in the sides I and II, respectively.

First we assume on S those electromagnetic field
sources whose tangential components are identical to the
tangential components of the incident ficlds, E;, H/, where
the subscript ¢ denotes the tangential component. Then
we name the fields on the side II produced by these
sources the first-order transmitted electromagnetic fields
and express these as ETD, HTM | If the tangential compo-
nents of E'™ and H'™ on S, E/V and HY, are just
equal to E; and H/, respectively, on S, the reflected
fields on side I must be null. However, this situation
never happens as long as there exists some discontinuity
at § between the left and right sides. Thus, we consider
that the differences between the first-order transmitted
fields and the incident fields on S act as sources for the
fields reflected back to side 1. That is, we next assume the
following tangential electromagnetic field sources SEV
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and 6H® on S

5Et(1)___EtT(1)_ E! 5Hz(h= HzT(l)" H,. (1)

In this assumption, the equality between the tangential
components of fields on S and those on S! is tacitly
used. We name the fields on side I produced by the
sources 6E and SHY the first-order reflected fields
and express them as EX®, HRD Since the incident fields
E', H' on S' do not contribute to the reflected fields on
side 1, it follows that only E/D HT® of the right-hand
side of (1) act as the sources of ERD, FRD,

As a matter of course, the tangential components of
ERD and HRD® on §' do not coincide with the corre-
sponding fields on S', SE® and 8H. Therefore, we
further assume as the sources on SU the following tan-
gential components of the difference field between ERV
and SE® and the difference field between HR® and
SHD:

SEP = ER® — 5ED = EFD —(E[V — E})
SHP = HFD ~ sHV = HFO — (H'D — H}). (2)

We name the fields produced on side II by 8E®, 8 H® on
S the second-order transmitted fields and express them
as E'® HT® 1t is clear that the fields on side II caused
by the source fields SEV and §H" become zero because
these ficlds are already taken into account when the
first-order transmitted fields are calculated. (Refer to (1).)
It follows, therefore, that only ER® HED of the right-
hand side of (2) contribute "to producing the fields
E™ HT® 1In similar fashion, we define the nth-
order reflected electromagnetic fields, ER HR™ and
the (n+ Dth-order transmitted electromagnetic fields,
ET0+D HT@HD (3=2 3 ---). Then, it follows that only
the source fields ET™, HI™ on S' produce E*™, HX™
and that only the source fields EX, HR™ on S™ pro-
duce ET(n+1)’HT(n+1).

As is clear from the successive steps explained above,
the source of the nth-order transmitted fields on side I1
is the yet-mismatched quantity, on the surface S, between
the tangential components of the reflected fields down to
the (n—1Dth order and those of the transmitted fields
down to the (n — th order; the source of the nth-order
reflected fields on side 1 is the yet-mismatched quantity,
on the surface S, between the tangential components of
the reflected fields down to the (n — Dth order and those
of the transmitted fields down to the nth order. There-
fore, the higher order transmitted and reflected fields
rapidly decreases as the mismatched field quantity de-
creases. In other words, the transmitted and reflected
electromagnetic fields, Ef, HY and EX, H¥, given by

N N

Ef= L E™  Hi=LH™ (3
n=1 n=1
N N

Ef- LB HE- THM(4)
n=1 n=1

rapidly converge to the true transmitted fields E7, HT

and the true reflected fields ER, HR, respectively, with
the increase of N. It is evident that |[ET"+ D} < |ERM| «
|[ET™} and |ERCD| <|ET( D) < | ERM)| hold, or rather,
in most cases |ET"*V /ET™| <1 and |ER"+D s EROY|
< 1. Therefore, the rate of convergence of the series (3)
and (4) is remarkably high and moreover they converge
absolutely.

B. Mode Expressions of Reflected and Transmitted Fields

We express electromagnetic fields in diclectric wave-
guide regions (E,H) in terms of mode fields for the
dielectric waveguide (E, H) as follows:

E=Ya,E,+ [b(T)E(T)dT (5)
H=Ya,H,+ [b(T)H(T)dT (6)

where the first terms on the right-hand sides of (5) and (6)
are the sums of the guided modes, and the second terrns
are the spectral integrals of the radiation modes, and
these mode fields are written as

I_{m = hme ~IBmz

H(T') = h(T)e

E, =e,e 'Pn* (7)
E(T) = e(T)e " (8)

where B,, is the propagation constant in the z direction
of guided modes and the subscript m denotes a guided
mode number. 8 and I' are the wavenumbers with respect
to radiation modes; B is the wavenumber in the z direc-
tion and I' is that in the x direction in the cladding
region, the relation between them being I'=(n3k? -
B3)'/?, where k, denotes the free-space wavenumber.
The specific expressions for'e,,, h,,, e(I'), and h(T') are
given, for example, in [5] for both TE and TM modes. The
range of integration of T in (3) and (6) is usually 0 to .
Rigorously, however, when the real value range of B is
not 0 to k, but a certain value « to k, or —a to k, the
range of I' should be modified to exclude or include the
spectral range corresponding to B=0to ¢ or B=—a to
0. This case occurs, for instance, when the fields are those
which emanate from a tilted surface S. This modification,
however, is not very important in most practical numeri-
cal calculations for the present problem of waveguide
discontinuities, since the power included in the modified
part of the spectrum is, in most cases, negligibly small.
Next, we explain how to get the transmitted fields
E™, H" when source fields E_, H? are given on surface
S Fig. 2 shows a cross section of the part of waveguide
1I on the right side of the junction. The configuration is
assumed to be uniform in the y direction. Let C; be the
line which lies in the cross section of Fig. 2 and which is
on S™, let C; be the straight line parallel to the x axis a
certain distance from C,, and let C{" and C{™) be the
straight lines parallel to the z axis and at x = +o and
x = —», respectively. It is convenient to assign the direc-
tions to these lines as shown in Fig. 2 using arrows. Also,
let the three regions bounded by the lines C{", C,, C$7,
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Fig. 2. A cross section of the part of waveguide I1.

and C; and the core—cladding boundary lines x = d" /2
and x =—d" /2 be $*, S,, and S’ as in Fig. 2.

First, the transmitted flelds EY, H"M are expressed in
terms of the mode fields in waveguide II, i.e., EM, H'
(EY, HY or E'™(T"), H'(T")), in the form of (5) and (6).
Then, applying the Lorentz reciprocity theorem for the
field pairs E™, H" and E", H" in each region of $¢*,
Sy, and $¢7) and adding the three results, we have zero
values for the integrals on the regions S, S, and $¢7?
because there are no sources within these regions. Also,
we have zero values for the integrals on the lines x =
+d" /2 and the lines C{™ and C{’ because of the
boundary conditions on x =+ d"/2 and the radiation
condition of EI, H' at x = +, respectively, the result
being

/ (ElleII*+EII*X_HII),indl
C

+ [ (E"XHY+EX X H")i,dl=0 (9)
CO t n

where i, is the outwardly directed unit normal and *
denotes the complex conjugate. If B is imaginary, mode
fields E", H™ must be replaced by those which propagate
in the negative z direction. If guided mode fields EX, HI!
are used for E'', H™ in (9), the normalized orthogonality
properties for the guided modes

1 =
5| (enxhy)iiar=s,, (10)

can be used to derive from the integral on C; of (9)
the expansion coefficients a,,, where §,, denotes the
Kronecker delta function. In this case, we have from (9)

A

1
Z—Zf (EX*X HY+ E? x HY*) i, dl. (11)
Co

On the other hand, if radiation mode fields E™(I"), H™(I")
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are chosen as E", H" in (9), the normalized orthogonal-
ity properties for the radiation modes

3

(e(T,)x h*(T,))-i, dx

TE radiation modes

(85 /18,)3(1, = T,),
(B,/18,))8(I,—T,), TM radiation modes

(12)

can be used to derive from the integral on Cr the expan-
sion coefficient A(T"), where 8( ) is the Dirac delta func-
tion. In this case, we have from (9)

E™(T)*X H? + E® x H'(T)*)-i, dI

(13)

b(l“)=~%fco(

for real BY, and for imaginary B!
M cmny s 04 E0~ U TV ¢
b(M) = -~ J(E™(TY*X HY + E? X B™(T)*) i, dl.
CO
(14)

Here u, is +1 or -1, depending on whether
E™(T), H'(T) are TE-mode fields or TM-mode fields,
and the fields marked with overbars (E', H) denote the
radiation mode fields propagating in the negative z direc-
tion. We can obtain analogously the mode expansion
coefficients for the fields produced in side I when sources
are given on S! just to the left of surface S. The results
are similar to (11), (13), and (14) and are omitted here.

Now, it is very easy to get the expansion coefficients a,,
and b(T") for the fields of waveguide II expressed in the
form of (5) and (6) when the source fields on Cy, i.e., E]
and H?, are given in terms of the mode fields of wave-
guide I that propagate in the negative z direction. Let
E?, H? be given by

= LcnEl, + [8(T)EXT)dr (15)

= Ye,H,+ [¢(T)H(T)dT.  (16)

Then, substituting (15) and (16) into (11), (13), and (14)
yields the following three expressions:

1
a4, = _2_ { Z (a,nIl’m + a"rrf’m)cm’

# [ + B )e(ryar) )

o) -5 { 2

m'

b, (T)' + by(T)")e,,

+ [(g/(1,1)" + g"(I", 1)) g(I") dI"} (18)
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for real BY, and

b(r) = { 2 (b D) + 5T e

m

+ [(g/ (T, TY"" + g"(I",T)" M) g(T1) dI"} (19)
for imaginary 8", where
1
B == CO(E,‘,,. X HLY) i, dl (20)
-— —j (EXx < HL,) i, dl (21)
b(T) == 5 fc (Bl < H(T)*) i, dl  (22)
0
1" 1 I * 1 :
b(T) = =5 [ (ENT)"x Hj,)-i,dl - (23)
0 .
_ 1
bu(T) = =5 [ (BT < Haf) ipdl - (29)
_ 1
BT) = =5 (Bl X BI(T))-ipdl - (25)
1
g'(r,I)=- Efc (E/(T)x H(T')*)-i,dl (26)
0

g0 == 5 [ (EXTY X BYD)) i, (27)

The superscripts I and Il on 4,,,,, b,,{T"), etc., mean that
the signs of the propagation constants B! and BY are
changed in the expressions without those symbols, de-
pending on whether I or II is attached. In the special case
where E?, H? on C, are the m'th guided mode fields of
waveguide 1 with amplitude C,, propagating in the posi-
tive z direction, the expansion coefficients (17)-(19) re-
duce to the following simpler forms:

1
ap = E( )C (28)

b(T) = E(b;n,(f‘) + b (1)), for real I (29)

jus , . . 1
= 7 (bm,( 1‘) — for imaginary 8*.

(30)

b (1))

Similarly, we can obtain the fields E', H' on side I
produced by those source fields on S just to the left of
surface S whose tangential components are expressed by

=Y a,Ep+ [b(T)E(T)dT (31)

= Ya,HL+ [b(T)HX(T)dT.  (32)
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Fig. 3. Step discontinuity.

That is, the mode expansion forms for E', H! are given by

= YcnEf+ [g(T)EY(T)dr (33)

= Le Hy+ [g(MH(T) AT (34)

where the expansion coefficients c,, and g(I') become

1
Cn="75 { Y (a’,f,’fn, + a”,,ff‘n,)am,
P

S (CIG TG ESPTs S ED

1 - -
g(M=-5 { L (B0 +B(T) ),

+ [(g'(T,T)™ + g"(F, 1)) b(I") dr'} (36)
for real B! and

8(1) = —’—}{Z(b’ ()" +B(T)*)a,,

+ /(g'(r,l—")*+ g"(I',T)*)b(T") dl“’} (37)
for imaginary 8L

III. NumMmericaL ExamMpLES
A. Step Discontinuities

The step discontinuity configuration treated here is
shown in Fig. 3. The core widths of waveguides 1 and II
are 2d and d, respectively, and the refractive indices of
the core and cladding are n, and n, for both waveguides.
The incident field is assumed to be the TE, mode with
unit power, incident on the junction at z =0 from the
side of waveguide 1. The first-order transmitted field, the
first-order reflected field, and the second-order transmit-
ted field were calculated using the equations presented in
the previous section for eight cases, four for the case of
small refractive index difference, i.c., #n, =1.01 and n, =
1.0, and four for the case of relatively large refractive
index difference, i.e., n, =1.432 and n, =1.0. The power
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TABLE I
REFLECTED AND TRANSMITTED POWER (7, = 1.01, n, = 1.0)
kod 5.0 10.0 20.0 40.0
Guided  0.94392 0.98995 0.95718 0.86334
PTM  Radiation 0.56085x10°1 0.10065x107! 0.42827x 1071  0.13666
Total 1.00001 1.00001 1.00001 1.00001
Guided  0.13486x10~° 0.25987x10% 0.23507x1075 0.16739%x1073
0.30990 x 10~
PRD  Radiation 0.98447x1075 0.79565X107% 0.59923x107° 0.18661x 107>
Total 0.11193x10™% 0.10555x10™* 0.83430x10~°  0.66390%x10°
pT@ 4 pRO 1.00002 1.00002 1.00002 1.00002
Guided  0.59260%x 10710 (0.83594x107'% 0.28565x1071° 0.58026x 10~
PT®  Radiation 0.64853%x10~° 0.80739x10~° 0.10126x107% 0.12346x1078
Total 0.70779%x107°  0.89099x107° 0.10412x107%  0.12404x10°
Guided  0.94391 0.98993 0.95717 0.86334
PTU+D Radiation 0.56082x10~! 0.10063x 10~ 0.42823x10~!  0.13666
Total 0.99999 0.99999 0.99999 0.99999
pTa+2 4 pRM 100000 1.00000 1.00000 1.00000
TABLE 11
REFLECTED AND TRANSMITTED POWER (n; = 1.432, n, = 1.0)
kod 05 1.0 2.0 40
Guided  0.92325 0.97528 0.98732 0.90899
PTM  Radiation 0.75691x 10~ 0.26752%10~1 0.26601x 1072 0.96803 x 101
Total 0.99894 1.00199 0.98998 1.00580
Guided  0.14826x 1072 0.32399x1072 0.21542x1072 0.31563x1072
0.68104 X102
PRM  Radiation 0.17909x 1072 0.13133x1072 0.12396x 1072 0.86474X 1072
Total 0.32735x 1072 0.45532x1072 0.33938x1072 0.18614x1071
PTO 4 pRO 1.00221 1.00654 0.99338 1.02441
Guided  0.21357x107° 0.92822x 1073 0.13693%x10~* 0.29406%10~*
PT®  Radiation 0.34411x107° 0.59777x107° 0.22633x10™* 0.10180x 102
Total 0.55768x 1075 0.15260x10™* 0.36326x 1074 0.10475x 1072
Guided  0.92149 0.96936 0.99343 0.90026
PTA+D  Radiation 0.75208x 107! 0.26092x10~1 0.31076x10~% 0.81402X 1071
Total 0.99670 0.99545 0.99654 0.98166
PTa+2 L pRAY (99997 1.00000 0.99994 1.00028

Qo

90
]
T~
. ~
, >~
1 ~N
H AN
1] \
' \
) \ \
—_— \
! ~
' N \\ ¢
' N \
E \ IEyl \ °
H | .
T s -0
0.5 1.0

Fig. 4. Far radiated electric field pattern (n, = 1.01, n, = 1.0,

kod = 20.0).

Fig. 5. Far radiated electric field pattern (n; =1.432, n, =10,

kod = 2.0).
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TABLE III
FIRST-ORDER REFLECTED AND TRANSMITTED POWER (1, =1.502, n, = 1.5, kod = 6177)
6 (Bent Angle) 1° 2° 3°
‘ Guided 0.86258 0.56434 0.29187
PT®  Rad.(even)  0.13036x107! 0.11120 0.26131
Rad. (odd) 0.12439 0.32446 0.44682
Total 1.00000 1.00000 1.00000
Guided 0.15912x 10~ 0.19736x10"  0.63180x 10~ 13
PRD  Rad.(even)  0.30512%x1077 0.46961 x 10~° 0.19819x 103
Rad. (odd) 0.16348%x 10~ 0.34647x10~* 0.33690x 104
Total 0.16379%x10~* 0.35117x10~* 0.35671x 10~*
PTM 4 pRO 1.00002 1.00004 1.00004
6 (Bent Angle) 4 5° 10°
Guided 0.12326 0.42511x107" 0.18270%x 1073
PT®  Rad.(even)  0.38090 0.45073 0.49972
Rad. (odd) 0.49584 0.50676 0.50010
Total 1.00000 1.00000 1.00000
Guided 09545610~ 0.67899x10~  0.67785%x 1012
PRD  Rad.(even)  0.45116x1073 0.10308x 10~ 0.47658 x 1073
Rad. (odd) 0.34514x 104 0.88099x10~* 0.21157x1073
Total 0.39025x10~* 0.98407x 10~ 0.68816x 1073

PTM 4 pRO

1.00004
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values are listed in Table I for the four cases of kyd = 5.0,
10.0, 20.0, and 40.0 with n,=1.01 and n,=1.0 and in
Table II for the four cases of k,d = 0.5, 1.0, 2.0, and 4.0
with n; =1.432 and n, = 1.0. The symbols P7® and PRD
indicate the first-order transmitted and reflected power,
respectively; P7@ indicates the power of the second-order
transmitted field, while PT¢*+? indicates the power of the
sum of the transmitted field up to the second-order,
which is different from P7® + PT®  Although results
with higher accuracy would be obtainable, up to the five
significant figures are shown in the tables. Two guided
modes can be guided only in the case of k,d =40.0 for
the examples of Table I and only in the case of k,d = 4.0
for the examples of Table II; all others are the single
guided mode waveguides.

It is observed that in the case where the difference
between core and cladding refractive indices is very small,
as in the examples in Table I, the reflected power is
extremely small and the second-order transmitted power
becomes even smaller. Therefore we can say that the
calculation of only the first-order transmitted field suf-
fices for a practical solution. Also, it is observed from
Table II that even for the case of a relatively large
difference between core and cladding refractive indices,
calculation of the transmitted fields up to the second
order is sufficient to attain very high accuracy; e.g., even
in the worst case the relative error in the energy relation
is less than 0.03%.

Far radiated fields can easily be obtained by applying
the method of steepest descents to the radiation mode
expansion part of mode expansion expressions for the
transmitted and reflected fields. Figs. 4 and 5 show a plot
of the absolute value of far radiated first-order electric
field lEy(qS)l for the cases of n, =1.01, n, = 1.0, kyd = 20.0
and n, =1.432, n, =1.0, kyd = 2.0, respectively. In Fig. 4,

1.00010 1.00069
X
O
n,
I n / (r
2 >d D)
n,
2ad M

Fig. 6. Sharp bend.

only the transmitted side is shown because the reflected
side value is negligibly small. The small discrepancy ob-
served at the 90° position in Fig. 5 is caused by a neglect
of the higher order fields. Incidentally, it is confirmed for
all eight cases that the first-order transmitted radiation
power calculated from the following expression:

ws2f 1
p=2f /2(—2—\/;22 |Ey(¢)|2)n2kord¢ (38)

using discretization every 1° and the same power calcu-
lated from another expression,

P = ["*b(T)[ ar (39)
0

agree to within 1.5%.

B. Sharp Bends

Another discontinuity configuration examined numeri-
cally is the sharp bend shown in Fig. 6. The bent angle is
0 and the core width is the same for waveguides I and II.
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Again, the incident field is assumed to be the TE, mode
field with unit power. The first-order reflected and trans-
mitted power values are shown in Table III for the six
cases of bend angle 6=1° 2° 3° 4° 5° and 10° with
n,=1502, n,=15, and kyd=67. As seen from Table
III, the first-order reflected guided mode power is less
than 1071° for all cases, which means that the reflected
guided mode power is insignificant. It is seen that the
reflected radiation power is also very small. Therefore, we
can say that full-wave analysis including reflected fields is
unnecessary for sharp bends as long as the bend angle is
not too large.

Parts (a) and (b) of Fig. 7 show the far radiated electric
field |E,| for the cases of 6=4° and 20°, respectively.
Incidentally, the far-field pattern for 6 =10° also was
found to become much the same as that for 6 = 20°.

1V. ConcLusions

An analytical and successive method for solving electro-
magnetic fields in abrupt discontinuities of dielectric slab
waveguides has been presented and numerical results
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shown for step discontinuities and sharp bends. The re-
sults can serve as data for checking the accuracy of
solutions obtained using other numerical techniques that
would be useful for solving more complicated discontinu-
ity configurations. Although the present method is partic-
ularly effective when applied to abrupt discontinuities in
open type waveguides, where the reflected power is very
small, the method is also applicable, theoretically, to
discontinuity configurations causing large reflected power.
Moreover, the method could easily be extended to prob-
lems of abrupt discontinuities of any type of waveguides,
including closed types.
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